Exercise 43

Find the critical numbers of the function.

$$
f(x)=x^{2} e^{-3 x}
$$

Solution

A critical number is a value of x for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{2} e^{-3 x}\right) \\
& =\left[\frac{d}{d x}\left(x^{2}\right)\right] e^{-3 x}+x^{2}\left[\frac{d}{d x}\left(e^{-3 x}\right)\right] \\
& =(2 x) e^{-3 x}+x^{2}\left[\left(e^{-3 x}\right) \cdot \frac{d}{d x}(-3 x)\right] \\
& =2 x e^{-3 x}+x^{2}\left[\left(e^{-3 x}\right) \cdot(-3)\right] \\
& =2 x e^{-3 x}-3 x^{2} e^{-3 x} \\
& =x e^{-3 x}(2-3 x)
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
x e^{-3 x}(2-3 x)=0 \\
x=0 \quad \text { or } \quad 2-3 x=0 \\
x=0 \quad \text { or } \quad x=\frac{2}{3}
\end{gathered}
$$

